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Abstract 

Kernel density estimation (KDE) is a widely used nonparametric technique for estimating the probability 

density function (PDF) of a random variable. However, the performance of KDE depends largely on the 

choice of the bandwidth parameter, which controls the trade-off between bias and variance in the 

estimation. In this study, we investigate the Silverman method for selecting the bandwidth for univariate 

continuous PDFs, and propose a modified method that improves the accuracy and efficiency of the 

estimation. We use simulation to compare the two methods, and show that the modified method achieves 

lower mean squared error (MSE) and mean integrated squared error (MISE) than the Silverman method. 
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Introduction 

Kernel density estimation (KDE) is a powerful tool in statistics and data analysis. It is a 

nonparametric method that estimates the probability density function (PDF) of a random 

variable without making any assumptions about its underlying distribution. It does so by using 

a kernel function, which is a smooth and symmetric function that assigns weights to nearby 

observations, and then taking their weighted average. KDE can be seen as a generalization of 

the histogram, where the bins are replaced by kernel functions centered at each observation. 

The idea of using kernel functions to estimate PDFs dates back to Rosenblatt (1956) [12], who 

proposed the kernel estimator for univariate continuous PDFs and derived its asymptotic mean 

squared error (MSE) based on symmetric kernels. Parzen (1962) [11] extended the kernel 

estimator to multivariate PDFs and gave a general formula for the optimal bandwidth, which is 

the smoothing parameter that controls the trade-off between bias and variance in the 

estimation. Since then, many researchers have developed various methods for selecting the 

bandwidth, such as plug-in methods (Scott et al., 1977; Sheather and Jones, 1991; Wand and 

Jones, 1994; Tenreiro, C. 2020) [16, 17, 21, 20], cross-validation methods (Rudemo, 1982; Bowman 

and Azzalini, 1997; Stone, 1984; Scott and Terrell, 1987; Savchuk et al., 2010) [13, 3, 19, 15, 14], 

and rule-of-thumb methods (Silverman, 1986) [18].  

KDE has been widely applied in various fields of science and engineering because of its ability 

to describe the shape and features of the data without imposing any parametric assumptions. 

For example, KDE has been used in medicine to analyze the distribution of blood pressure 

(Jankowska et al., 2017) [7], in machine learning to perform classification and clustering tasks 

(Lahane and Sangaiah, 2015) [9], in genetics to detect differential expression of genes and cells 

(Alquicira-Hernandez and Powell, 2021) [1], in petroleum engineering to model the porosity 

and permeability of reservoir rocks (Corina and Hovda, 2018) [4], in climatology to study the 

wind speed and direction (Hu et al., 2017) [6], in energy economics to forecast the electricity 

consumption and price (Arora and Taylor, 2016) [2], and in ecology to estimate the home range 

and habitat selection of wildlife (Fleming and Calabrese, 2017) [5].  

In this study, we focus on the rule-of-thumb method by Silverman (1986) [18], which is one of 

the simplest and computationally efficient methods for choosing the bandwidth for univariate 

continuous PDFs. We investigate its performance and limitations, and propose a modified 

method that improves the accuracy and efficiency of the estimation. We use simulation to 

compare the two methods, and show that the modified method achieves lower MSE and mean 

integrated squared error (MISE) than the Silverman method.  

 

Kernel estimation 

Suppose that 𝑥1, 𝑥2, … , 𝑥𝑛 is an independent and identically distributed (i.i.d) random samples  
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from a PDF 𝑓. The kernel density estimator is defined as follows (Rosenblatt, 1956) [12] 

 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1   (1) 

 

where 𝐾 represents a non-negative function called the kernel, and ℎ > 0 represents the smoothing parameter or bandwidth. The 

kernel function 𝐾 is often chosen to be a symmetric probability function that satisfies the following conditions: 

 

1. ∫ 𝐾(𝑢) 𝑑𝑢 = 1 

2. ∫ 𝑢𝐾(𝑢) 𝑑𝑢 = 0 

3. ∫ 𝑢2𝐾(𝑢) 𝑑𝑢 = 𝜅2 > 0 

 

The kernel estimation of the probability density function depends on the kernel function 𝐾, which determines the shape of the 

weights assigned to each observation, and the bandwidth ℎ determines the width of the window around each observation. The 

choice of the kernel function 𝐾 has a minor effect on the estimation of the function 𝑓, as long as the chosen kernel is smooth and 

symmetric. One of the most commonly used kernel functions is the standard normal distribution function: 

 

𝐾(𝑢) =
1

√2𝜋
exp (−

𝑢2

2
) 

 

The choice of the bandwidth ℎ, on the other hand, has a major effect on the estimation of 𝑓, as it controls the trade-off between 

bias and variance. Figure 1 shows how different values of ℎ affect the estimation of 𝑓. If ℎ is too small, the estimator will be very 

sensitive to noise and will overfit the data, resulting in a high variance and low bias. If ℎ is too large, the estimator will be very 

smooth and will underfit the data, resulting in a low variance and high bias. Therefore, it is important to choose an optimal value 

of ℎ that balances the bias and variance and minimizes the mean squared error (MSE) or mean integrated squared error (MISE) of 

the estimator. 

 

 
 

Fig 1: Kernel density estimation of a PDF with different bandwidth (h)  

 

Some properties of kernel estimator  

In this section, we will review some of the properties of kernel estimators, such as their approximated bias, variance, MSE and 

MISE. Since KDE are generally considered biased estimators, and therefore measurements of errors should be used to study the 

performance of these estimators, and one of the most famous of these measurements is the mean square error (MSE), which is 

known as follows (Silverman, 1986; Wand and Jones, 1995) [18, 21]: 

 

MSE(𝑓) = 𝐸[𝑓(𝑥) − 𝑓(𝑥)]
2
 

 

Note that we could write the MSE as the bias squared (i.e., 𝑏2 = [𝐸 (𝑓(𝑥)) − 𝑓(𝑥)]
2

) plus the variance (𝑉𝑎𝑟 (𝑓(𝑥))). We usually 

find an approximation to the MSE as follows  

 

𝐸 (𝑓(𝑥)) =
1

𝑛ℎ
∑ 𝐸 [𝐾 (

𝑥𝑖 − 𝑥

ℎ
)]

𝑛

𝑖=1

=
1

ℎ
 𝐸 [𝐾 (

𝑥𝑖 − 𝑥

ℎ
)] =

1

ℎ
∫ 𝐾 (

𝑥𝑖 − 𝑥

ℎ
) 𝑓(𝑥) d𝑥 

 

let 𝑦 =
𝑥𝑖−𝑥

ℎ
, we get 

 

𝐸 (𝑓(𝑥)) = ∫ 𝐾(𝑦)𝑓(𝑥 − 𝑦ℎ) d𝑦 
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Using Taylor series expansion of 𝑓(𝑥 − 𝑦ℎ), we have  

 

𝐸 (𝑓(𝑥)) ≈ ∫ 𝐾(𝑦) [𝑓(𝑥) + 𝑦ℎ𝑓′(𝑥) +
1

2
𝑦2ℎ2𝑓′′(𝑥) + 𝑜(ℎ2)] d𝑦 

 

By simple algebraic manipulation, the bias can be approximated as follows 

 

𝑏 ≈ ∫ 𝐾(𝑦) [𝑓(𝑥) + 𝑦ℎ𝑓′(𝑥) +
1

2
𝑦2ℎ2𝑓′′(𝑥) + 𝑜(ℎ2)] d𝑦 − 𝑓(𝑥) =

1

2
ℎ2𝑓′′(𝑥) ∫ 𝑦2𝐾(𝑦) d𝑦 + 𝑜(ℎ2) =

1

2
ℎ2𝑓′′(𝑥)𝜅2 + 𝑜(ℎ2) 

 

Therefore, as ℎ → 0, the bias shrinks by 𝑜(ℎ2). In addition, the variance can be approximated as follows, 

 

𝑉𝑎𝑟 (𝑓(𝑥)) =
1

𝑛ℎ2
𝑉𝑎𝑟 [𝐾 (

𝑥𝑖 − 𝑥

ℎ
)] ≤

1

𝑛ℎ2
𝐸 [𝐾2 (

𝑥𝑖 − 𝑥

ℎ
)] =

1

𝑛ℎ
∫ 𝐾2(𝑦)𝑓(𝑥 + 𝑦ℎ) d𝑦 

 

Using Taylor series expansion of 𝑓(𝑥 + 𝑦ℎ), we have  

 

𝑉𝑎𝑟 (𝑓(𝑥)) =
1

𝑛ℎ
∫ 𝐾2(𝑦)[𝑓(𝑥) + 𝑦ℎ𝑓′(𝑥)𝑜(ℎ)]d𝑦 =

1

𝑛ℎ
𝑓(𝑥) ∫ 𝐾2(𝑦) d𝑦 + 𝑜 (

1

𝑛ℎ
) =

1

𝑛ℎ
𝑓(𝑥)𝑅(𝑘) + 𝑜 (

1

𝑛ℎ
) 

 

Where 𝑅(𝐾) = ∫ 𝐾2(𝑦)d𝑦. Note that, as 𝑛 → ∞ and ℎ → 0, the variance shrinks at rate of 𝑜 (
1

𝑛ℎ
). Hence  

 

MSE(𝑓) ≈
1

4
ℎ4𝑓′′(𝑥)2𝜅2

2 +
1

𝑛ℎ
𝑓(𝑥)𝑅(𝑥) + 𝑜(ℎ4) + 𝑜 (

1

𝑛ℎ
)  (2) 

 

The MISE of a kernel estimator is defined as the expected value of its integrated squared error:M 

  

ISE(𝑓) = 𝐸 ∫[𝑓(𝑥) − 𝑓(𝑥)]
2

d𝑥 = ∫ MSE(𝑓) d𝑥  

 

Using the MSE approximation derived in (2), we can obtain an expression for the MISE by applying some algebraic 

manipulations. The result is: 

 

 MISE(𝑓) ≈
1

4
ℎ4 ∫ 𝑓′′(𝑥)2d𝑥 𝜅2

2𝐾 +
1

𝑛ℎ
∫ 𝑓(𝑥)d𝑥 𝑅(𝑥) + 𝑜(ℎ4) + 𝑜 (

1

𝑛ℎ
)  

 

=
𝜅2

2𝐾

4
ℎ4 ∫ 𝑓′′(𝑥)2d𝑥 +

𝑅(𝑥)

𝑛ℎ
+ 𝑜(ℎ4) + 𝑜 (

1

𝑛ℎ
)  (3) 

 

Therefore, the MISE depends on both the sample size 𝑛 and the bandwidth ℎ, and it can be minimized by choosing an optimal 

value of ℎ that balances the bias and variance terms. 

To find the optimal value of the smoothing parameter ℎ for the MISE criteria, we differentiate the previous equation with respect 

to ℎ and then equate it to zero to obtain 

 

ℎ𝑜𝑝𝑡 = [
𝑅(𝐾)

𝑛𝜅2
2 ∫ 𝑓′′(𝑥)2d𝑥

]

1

5
  (4) 

 

 Unfortunately, the previous formula (4) cannot be applied in practice, because ∫ 𝑓′′(𝑥)2d𝑥 is unknown and inversely proportional 

to ℎ𝑜𝑝𝑡, so Silverman (1986) suggested using normal distribution density as a reference distribution, and thus 

 

∫ 𝑓′′(𝑥)2 d𝑥 =
1

𝜎5 ∫ 𝜙′′(𝑥)2 d𝑥 =
3

8𝜎5√𝜋
≈ 0.212𝜎−5  (5) 

 

where 𝜙(𝑥) is the standard normal distribution. Substituting back in equation (4) with 𝑅(𝐾) =
1

2√𝜋
 and 𝜅2 = 1, we have 

 

ℎ𝑆 = 1.06𝜎𝑛−
1

5  (6) 

 

Where 𝜎 is approximated by the standard deviation of the sampled dataset. In order to improve the bandwidth in (6) and make it 

robust for deviation from normality and less sensitive to outliers and skewness, Silverman (1986) suggests using the interquartile 

range IQR of the sampled data to estimate the standard deviation, and then apply it as follows: 

 

ℎ𝑆∗ = 1.06 min (𝜎̂,
IQR

1.34
) 𝑛−

1

5  (7) 

 

Note that the interquartile range for the standard normal distribution is equal to 1.34.  
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  In this article, we propose using the standard Cauchy distribution to approximate the standard normal distribution in (5). Both 

distributions are symmetric and bell-shaped, but the Cauchy distribution has fatter tails. This means that it gives more weight to 

extreme values, which is a useful feature for our approximation. 

 Replacing the standard normal distribution with the standard Cauchy distribution, we obtain: 

 

∫ 𝜙′′(𝑥)2 𝑑𝑥 ≈  ∫ (
𝜕2

𝜕𝑥2

1

𝜋(1 + 𝑥2)
)

2

𝑑𝑥 = ∫ (
6𝑥2 − 2

𝜋(1 + 𝑥2)3
)

2

𝑑𝑥 =
3

4𝜋
 

 

By substituting the result back in the optimum bandwidth in (4) we obtain 

 

ℎ𝑀 = 1.03𝜎𝑛−
1

5  (8) 

 

To make the bandwidth in (8) less sensitive to unusual data values or any deviation from normality, I recommend using the 

following bandwidth  

 

ℎ𝑀∗ = 1.03 min (𝜎̂, 𝑠∗ =
𝑃0.977−𝑃0.023

4
) 𝑛−

1

5  (9) 

 

Where 𝑃 denotes the percentile of the sampled data, and 𝑠∗ be an estimate of the standard deviation based on the empirical rule of 

the normal distribution, which states that about 95% of the values are within two standard deviations from the mean. 

 

Simulation 
In this section, we compare the modified method of estimating the bandwidth with the Silverman method using Monte Carlo 

simulation. The models that we used in our simulation study were chosen to represent a variety of shapes and features of the 

PDFs, such as unimodal, bimodal, symmetric, skewed, and multimodal distributions. Figure 2 displays the graphs of the models, 

which are described as follows: 

 

Model 1: 𝑁(0, 1) 

 

Model 2: 𝑁(0, 3) 

 

Model 3: 𝑁(0, 9) 

 

Model 4: 
9

10
𝑁(0, 1) +

1

10
𝑁(0, 4) 

 

Model 5: 
1

2
𝑁(0, 1) +

1

2
𝑁(6, 2) 

 

Model 6: 
1

5
𝑁(0, 1) +

1

5
𝑁 (

1

2
, (

2

3
)

2

) +
3

5
𝑁 (

13

12
, (

5

9
)

2

) 

 

Model 7: 𝑡(5) 

 
Model 8: 𝑡(10) 

 

Model 9: 
1

2
𝑁 (−1, (

2

3
)

2

) +
1

2
𝑁 (1, (

2

3
)

2

) 

 

Model 10: 
1

2
𝑁 (−

3

2
, (

1

2
)

2

) +
1

2
𝑁 (

3

2
, (

1

2
)

2

) 

 

Model 11: 
3

4
𝑁(0, 1) +

1

4
𝑁 (

3

2
, (

1

3
)

2

) 

 

Model 12: ∑
1

8
𝑁 (3 [(

2

3
)

𝑖

− 1] , (
2

3
)

2𝑖

)7
𝑖=0  

 

Model 13: 
1

2
𝑁(0,1) + ∑

1

10
𝑁 ((

𝑖

2
− 1) , (

1

10
)

2

)4
𝑖=0   

 

Model 14: 
1

2
𝑁(0,1) + ∑

21−𝑖

31
𝑁 (𝑖 +

1

2
, (

2−𝑖

10
)

2

)2
𝑖=−2  
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Fig 2: Plots of the 14 PDF’s that were used in our simulation 
 

Some of these models were adapted from (Marron and Wand, 1992) [10] and some from Kile (2010) [8]. The simulations were run 

for 10,000 times for each of the proposed sample sizes (n=30,100,300), and then the performance of the methods was compared 

using the MSE and MISE, where R 4.2.3 was used to run the simulation. 

 

Results and Discussions 
The simulation results are summarized in Tables 1, 2 and 3. Our results showed that the modified method generally achieved 

lower MSE and MISE than the Silverman method, especially when the PDF was skewed, bimodal, or had multiple modes. For 

example, for model 5, which is a mixture of two normal distributions with different means and variances, the modified method 

reduced the MSE by 37.7%, 44.6%, and 49.0% for sample sizes 30, 100, and 300, respectively. Similarly, for model 10, which is a 

mixture of two normal distributions with the same variance but opposite means, the modified method reduced the MSE by 44.7%, 

51.4%, and 56.0% for sample sizes 30, 100, and 300, respectively. For model 13, which is a mixture of a normal distribution and 

five normal distributions with very small variances, the modified method reduced the MSE by 0.0%, 0.1%, and 0.1% for sample 

sizes 30, 100, and 300, respectively. These results indicate that the modified method is more adaptive and robust to the shape and 

features of the PDF than the Silverman method, which assumes a normal distribution. 
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  The simulation results also showed that the performance of both methods improved as the sample size increased, as expected. 

However, the improvement was more significant for the modified method than for the Silverman method. For example, for model 

5, the MSE of the modified method decreased by 75.4%, 41.3%, and 46.2% as the sample size increased from 30 to 100, from 100 

to 300, and from 30 to 300, respectively. For the Silverman method, the MSE decreased by 64.8%, 28.9%, and 40.4% for the 

same sample size changes, respectively. This suggests that the modified method is more efficient and reliable than the Silverman 

method, especially for large samples. 

 
Table 1: Summary result of the simulation study when the sample size is n=30. 

 

 
MSE 𝒉𝑺∗ MSE 𝒉𝑴∗ MISE 𝒉𝑺∗ MISE 𝒉𝑴∗ 

Model 1 0.00227 0.00221 0.01557 0.01518 

Model 2 0.00025 0.00024 0.00513 0.00501 

Model 3 0.00003 0.00003 0.00171 0.00167 

Model 4 0.00187 0.00177 0.01471 0.01396 

Model 5 0.00130 0.00081 0.02661 0.01667 

Model 6 0.00418 0.00385 0.02388 0.02221 

Model 7 0.00174 0.00161 0.01533 0.01453 

Model 8 0.00197 0.00184 0.01514 0.01426 

Model 9 0.00216 0.00212 0.01747 0.01701 

Model 10 0.00763 0.00422 0.07477 0.04139 

Model 11 0.00294 0.00286 0.02179 0.02107 

Model 12 0.02657 0.02533 0.18517 0.17547 

Model 13 0.22065 0.22066 1.33238 1.33228 

Model 14 0.00483 0.00482 0.03632 0.03623 

 
Table 2: Summary result of the simulation study when the sample size is n=100. 

 

 
MSE 𝒉𝑺∗ MSE 𝒉𝑴∗ MISE 𝒉𝑺∗ MISE 𝒉𝑴∗ 

Model 1 0.00080 0.00079 0.00597 0.00590 

Model 2 0.00009 0.00009 0.00199 0.00197 

Model 3 0.00001 0.00001 0.00065 0.00065 

Model 4 0.00063 0.00062 0.00579 0.00563 

Model 5 0.00083 0.00046 0.01642 0.00911 

Model 6 0.00149 0.00144 0.00928 0.00901 

Model 7 0.00057 0.00056 0.00605 0.00599 

Model 8 0.00067 0.00064 0.00590 0.00567 

Model 9 0.00107 0.00096 0.00862 0.00773 

Model 10 0.00502 0.00244 0.04660 0.02269 

Model 11 0.00153 0.00137 0.01169 0.01044 

Model 12 0.02116 0.02054 0.14784 0.14320 

Model 13 0.20017 0.20007 1.32092 1.32025 

Model 14 0.00354 0.00345 0.02749 0.02686 

 
Table 3: Summary result of the simulation study when the sample size is n=300. 

 

 
MSE 𝒉𝑺∗ MSE 𝒉𝑴∗ MISE 𝒉𝑺∗ MISE 𝒉𝑴∗ 

Model 1 0.00033 0.00033 0.00256 0.00255 

Model 2 0.00004 0.00004 0.00086 0.00085 

Model 3 0.00000 0.00000 0.00029 0.00029 

Model 4 0.00025 0.00024 0.00254 0.00249 

Model 5 0.00051 0.00026 0.00964 0.00486 

Model 6 0.00062 0.00062 0.00406 0.00405 

Model 7 0.00021 0.00022 0.00268 0.00275 

Model 8 0.00027 0.00027 0.00262 0.00256 

Model 9 0.00054 0.00046 0.00433 0.00366 

Model 10 0.00309 0.00136 0.02748 0.01206 

Model 11 0.00085 0.00071 0.00661 0.00558 

Model 12 0.01697 0.01663 0.11942 0.11694 

Model 13 0.18772 0.18755 1.31503 1.31389 

Model 14 0.00295 0.00282 0.02284 0.02185 

 

Conclusion 
In conclusion, the simulation study demonstrated that the modified method for selecting the bandwidth for univariate continuous 

PDFs using KDE outperformed the Silverman method in terms of MSE and MISE. The modified method was more flexible and 

sensitive to the characteristics of the PDF, and achieved higher accuracy and smoothness. The modified method also showed 

greater improvement as the sample size increased, indicating its efficiency and reliability. Therefore, we recommend the modified 

method over the Silverman method for estimating univariate continuous PDFs using KDE. 
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